个人简介
本人长期从事推荐系统领域的应用研究,主要围绕哈希学习、排序学习、纠偏学习展开深入研究。近四年,在相关领域国际顶级期刊(ACM TKDD)和国际顶级学术会议(IJCAI, SIGIR, AAAI)发表论文数十篇,主持中央高校基本科研业务费项目2项,授权国家发明专利2项。
研究方向
推荐系统、信息检索
教育简历
2018年9月-2024年6月,北京交通大学,计算机科学与技术,博士(硕博连读)
2014年9月-2018年7月,合肥工业大学,电子信息科学与技术,学士
工作履历
2024年7月至今,北京工业大学计算机学院教师
学术兼职
[1] 学术期刊审稿人:ACM Transactions on Knowledge Discovery from Data, Knowledge and Information Systems, The Journal of Supercomputing
主要论文论著
[1] Fangyuan Luo, Jun Wu. Optimizing Recall in Deep Graph Hashing Framework for Item Retrieval (Student Abstract). The AAAI Conference on Artificial Intelligence, 2024. (CCF-A Conference)
[2] Fangyuan Luo, Jun Wu, Tao Wang. Discrete Listwise Content-Aware Recommendation. ACM Transactions on Knowledge Discovery from Data, 2024. (CCF-B Journal)
[3] Fangyuan Luo, Jun Wu. User-Dependent Learning to Debias for Recommendation. The International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023. (CCF-A Conference)
[4] Honglei Zhang, Fangyuan Luo, Jun Wu, Xiangnan He, Yidong Li. LightFR: Lightweight Federated Recommendation with Privacy-preserving Matrix Factorization. ACM Transactions on Information Systems, 2023. (CCF-A Journal)
[5] Fangyuan Luo, Jun Wu, Tao Wang. Discrete Listwise Personalized Ranking for Fast Top-N Recommendation with Implicit Feedback. The International Joint Conferences on Artificial Intelligence, 2022. (CCF-A Conference)
[6] Shuang Tang, Fangyuan Luo, Jun Wu. Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction. The International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022. (CCF-A Conference)
[7] Fangyuan Luo, Jun Wu, Haishuai Wang. Semi-Discrete Social Recommendation (Student Abstract). The AAAI Conference on Artificial Intelligence, 2021. (CCF-A Conference)
[8] Junheng Huang, Fangyuan Luo, Jun Wu. Semi-supervised Factorization Machines for Review-Aware Recommendation. The International Conference on Database Systems for Advanced Applications, 2021. (CCF-B Conference)
[9] Jun Wu, Fangyuan Luo, Yujia Zhang, Haishuai Wang. Semi-discrete Matrix Factorization. IEEE Intelligent Systems, 2020. (The organizer of AI's 10 to Watch)